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Abstract

This paper discusses flow structures and heat transfer rates generated by Rayleigh–B�eenard convective motions of a Boussinesq
fluid with a Prandtl number of 0.7 in a perfectly conducting cubical cavity. Complete numerical simulations of laminar flows were

conducted in the range of Rayleigh numbers 7� 1036Ra6 105. The large-eddy simulation (LES) technique was used for the
simulations at two high Rayleigh numbers (Ra ¼ 106 and 108). LES were carried out using a second-order accurate finite volume

code with a dynamic localized one-equation subgrid-scale (SGS) model with constant SGS Prandtl number. In the laminar regime,

two single roll structures and a four-roll structure in which the axis of each roll is perpendicular to one sidewall were found to be

stable. LES of Rayleigh–B�eenard convection in an infinite fluid layer were initially carried out and results were seen to be in

agreement with direct numerical simulations (DNS) reported in the literature. At Ra ¼ 106 and 108, the instantaneous velocity and

temperature fields present strong fluctuations with respect to the time-averaged flow field. The confining effect of the conductive

lateral walls of the cavity generates, in the unsteady flows at Ra ¼ 106 and 108, persistent vertical currents near these walls. The

recirculation of these ascending and descending flows towards the central region of the cavity produces large-scale organized rolling

motions, which imprint the topology of the time-averaged flow field in form of two vortex ring structures located near the horizontal

walls. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Rayleigh–B�eenard convection is a type of natural
convection that is produced by an unstable vertical
density stratification in a bounded horizontal fluid layer.
It is of considerable scientific and engineering im-
portance, and is related to some of the flow phenomena
in problems of thermal comfort in buildings, crystal
growth, solar collectors and the refrigeration of elec-
tronic circuit boards. It has been extensively studied
inside rectangular cavities because of the geometrical
simplicity of the boundary conditions. The flow in these
cavities is governed by a set of coupled non-linear par-
tial differential equations. It is particularly suitable for

studying the transition to turbulence because, under
certain conditions and when the Rayleigh number is
increased, the increasing flow complexity takes the form
of discrete flow transitions that can be studied individ-
ually. A complete review on Rayleigh–B�eenard convec-
tion can be found in Koschmieder (1993).
Considerable efforts have been made to predict the

heat transfer processes produced at the walls by the
convective motions in the Rayleigh–B�eenard flows.
The Nusselt number (Nu ¼ hL=k), which characterizes
the heat transfer rates at the walls, depends on the
non-dimensional parameters involved in the transport
equations, the Rayleigh number (Ra ¼ gbDTL3=ma), the
Prandtl number (Pr ¼ m=a), and the aspect ratios of the
enclosure. The type of thermal boundary conditions
applied at the walls of the enclosure and the type of flow
structure, for a given set of non-dimensional parameters,
may have a considerable effect on the Nusselt number.
Natural convection in side-heated cubical cavities has

been extensively studied using numerical simulations and
experiments (Leong et al., 1999). The flow in this system
invariably occurs with ascending/descending flows near
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the heated/cooled vertical wall. The number of stable
flow patterns or flow structures that develop increases
when the imposed temperature gradient is parallel to the
gravity vector and the parallelepiped enclosure tends to
the cubical geometry with no preferred horizontal di-
rection. Pallares et al. (1999) and Pallares et al. (2001)
describe numerical simulations and experimentally mea-
sured Rayleigh–B�eenard flows at a high Prandtl number
(Pr ¼ 130) in a cubical cavity with perfectly insulated or

perfectly conducting sidewalls (i.e. linear temperature
distribution on the lateral walls). They identified three
different single roll structures––two with the rotation
axis perpendicular to two opposite vertical walls and
one with the rotation axis perpendicular to two diago-
nally opposite vertical edges––a toroidal roll and two
four-roll structures. Fig. 1 shows the symmetry elements
for these flow structures in the horizontal midplane and
the nomenclature proposed by Pallares et al. (2001). It
should be noted that because of the symmetry of the
problem, the symmetry elements and the ascending and
descending regions shown in Fig. 1 can be rotated 90�,
180� or 270� with respect to the vertical symmetry axis
of the cubical cavity. The toroidal roll can also be ob-
tained with the descending central current and ascending
currents near the sidewalls.
Recently, Leong et al. (1999) reported experimentally

measured average Nusselt numbers produced by Ray-
leigh–B�eenard flows (1046Ra6 108) at the bottom hot
wall of a perfectly conducting cubical cavity at Pr ¼ 0:7.
However, they did not report any direct experimental
information about the flow topology. They inferred
the flow structure at Ra ¼ 105 by carrying out numerical
simulations and by comparing the values of the mea-
sured and computed average Nusselt numbers. The
numerical simulation was conducted only in one half of
the cavity by imposing symmetry boundary conditions
for velocity and temperature in the vertical midplane.
The present study analyses numerically the laminar

and turbulent Rayleigh–B�eenard flows at Pr ¼ 0:7 in a

Nomenclature

C subgrid-scale (SGS) model coefficient
f frequency (s�1)
g gravitational acceleration (m s�2)
h convective heat transfer coefficient

(Wm�2 K�1)
hj SGS heat flux (mK s�1)
K kinetic energy (J kg�1)
k thermal conductivity (Wm�1 K�1)
L height of the cavity (m)
N number of grid points
Nu Nusselt number, hL=k
p pressure (Pa)
Pr Prandtl number, m/a
q heat flux (Wm�2)
Ra Rayleigh number, gbDTL3=ma
S area (m2)
Sij strain tensor (s�1)
T temperature (K)
t time (s)
u, v, w velocity components (m s�1)
x, y, z cartesian coordinates (m)

Greeks
D increment
a thermal diffusivity (m2 s�1)
b thermal expansion coefficient (K�1)
dij Kronecker delta
k2 second largest eigenvalue of the velocity

gradient tensor
m kinematic viscosity (m2 s�1)
sij SGS stress tensor (Nm�2)

Superscripts and subscripts
’ fluctuation
� dimensional quantity
C cold wall
H hot wall
0 reference value
rms root mean square
s sampling
SGS subgrid-scale
V volume averaged
w wall

Fig. 1. Symmetry elements of the Rayleigh–B�eenard convective struc-
tures in the horizontal midplane of a cubical cavity according to

Pallares et al. (2001). ( ) Ascending fluid, (�) descending fluid, (-�-�-�)
roll axis, (––) symmetry plane.
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perfectly conducting cubical cavity to determine the flow
structures that may develop in the range of Rayleigh
numbers covered by the experiments of Leong et al.
(1999). The computations were performed without any a
priori assumption about the symmetry of the flow
structure. This is an important feature because different
steady flow structures with different symmetry elements
(see Fig. 1) may lead to different heat transfer rates
(Pallares et al., 1999). It should be noted that the im-
position of symmetry conditions on an unsteady struc-
ture could inhibit or excite certain natural wavelengths
of the flow.

2. Model

The physical model of the cubical cavity is shown in
Fig. 2. The six walls of the cavity are solid, immobile
and perfectly conducting. The top and the bottom plates
are maintained at uniform and constant temperatures. A
vertical linear temperature distribution is imposed at the
sidewalls. According to the Boussinesq approximation,
the physical properties of the fluid ðPr ¼ 0:7Þ are as-
sumed to be constant. Only a linear variation of density
with temperature is taken into account in the buoyancy
term of the momentum equation corresponding to the
vertical direction. The continuity equation, the three-
dimensional Navier–Stokes equations and the thermal
energy equation in terms of non-dimensional variables
are,

oui
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respectively. The scales used to obtain the non-dimen-
sional variables are the height of the cavity ðLÞ and the

velocity scale, u� ¼ ðgbDTLÞ1=2. Pressure was scaled with
qu�2 and the non-dimensional temperature, T , is defined
as T ¼ ðT � � T0Þ=DT where T0 is the mean temperature,
T0 ¼ ðTH þ TCÞ=2, and DT is the temperature differ-
ence, DT ¼ TH � TC. The non-slip boundary condition
for velocity is applied at the six walls. Constant tem-
perature boundary conditions are used at the hot bot-
tom wall (TH ¼ 1=2) and at the top wall (TC ¼ �1=2)
and a fixed linear temperature profile, T ¼ �zþ 1=2, is
imposed at the four perfectly conducting sidewalls.
Eqs. (1)–(3) and the corresponding boundary condi-

tions have been solved numerically by the second order
accuracy control volume code 3DINAMICS. The dif-
fusive fluxes are discretized in a staggered grid using
a central scheme. The second order QUICK and cen-
tral formulations can be optionally selected to compute
the convective fluxes. The code can perform the time-
marching procedure with a semi-implicit ADI method
or with an explicit Adams–Bashforth scheme. The cou-
pling between the pressure and velocity field was com-
puted using a predictor–corrector scheme involving a
Poisson equation that was solved with the conjugate
gradient method. The complete mathematical formula-
tions and a detailed description of the numerical meth-
ods can be found in Cuesta (1993). In the present study,
the QUICK and the semi-implicit formulations have
been used in the computations in the cubical cavity at
Ra6 105. In this range of Rayleigh numbers and for the
Prandtl number considered ðPr ¼ 0:7Þ the flow is lami-
nar. The non-dimensional time step Dt ¼ Dt�u�0=L ¼ 2
used at Ra ¼ 6� 104 for which the flow is oscillatory is
small enough in comparison with the period of oscilla-
tion of the flow ð1=f ¼ 100Þ. Uniform grids of 413 nodes
have been used for the low Rayleigh number simula-
tions ðRa6 105Þ. The adequacy of the code for describ-
ing these flows is shown in Pallares et al. (2001) where
numerical velocity distributions of the different flow
structures at Ra6 8� 104 and Pr ¼ 130, computed using
the same grid resolution, were compared successfully
with the corresponding PIV measured distributions. At
Ra ¼ 8� 104 and Pr ¼ 130 the difference on average
Nusselt numbers using uniform grids of 413 and 813

nodes was 2.5%.
The LES technique has been used for the compu-

tations at Ra ¼ 106 and 108. LES is based on the de-
composition of the flow quantities into a large-scale
component, which is defined by the filtering operation
and is resolved by the grid, and a subgrid-scale (SGS)
component that has to be modeled (Germano et al.,
1991). The filtering operation, applied to Eqs. (1)–(3),
generates additional terms on the right-hand side of Eq.
(2) (�osij=oxj) and on the right-hand side of Eq. (3)
(�ohj=oxj) which are responsible of the SGS contribu-
tions to the instantaneous large-scale momentum and
thermal energy budgets, respectively. The anisotropic
part of the SGS tensor is modeled in alignment withFig. 2. Physical model and coordinate system.

348 J. Pallares et al. / Int. J. Heat and Fluid Flow 23 (2002) 346–358



the resolved local strain rate tensor (sij � dijskk=3 ¼
�2mSGSSij). By analogy to sij, the SGS heat fluxes are
modeled using a gradient–diffusion hypothesis (hj ¼
�aSGS oT=oxj). The SGS diffusivity of momentum (mSGS)
was computed following the localized one-equation dy-
namic SGS model proposed by Kim and Menon (1997).
In this model the SGS viscosity is computed as

mSGS ¼ CDðKSGSÞ1=2: ð4Þ
Eq. (4) indicates that the local SGS viscosity is as-

sumed to be proportional to the product of the SGS
length-scale, imposed by the local grid resolution
(D ¼ fDx Dy Dzg1=3), and to the SGS velocity scale,
given by the square-root of the local SGS kinetic energy
(KSGS). In Eq. (4), the local KSGS is computed dynami-
cally by solving its transport equation in which the
turbulent transport and dissipation terms are modeled.
The buoyancy production term in this equation is
computed from the resolved temperature field. The local
model coefficient, C, is determined using the dynamic
procedure (Germano et al., 1991). The complete for-
mulation of the SGS model can be found in Kim and
Menon (1997).
A constant SGS Prandtl number (PrSGS ¼ mSGS=

aSGS ¼ 0:4) was used to compute the SGS heat fluxes
(i.e. hj ¼ �fmSGS=0:4goT=oxj) as in previous LES of
turbulent Rayleigh–B�eenard flows which had not shown
significant differences in average quantities using a con-
stant PrSGS or by computing it dynamically (Peng and
Davidson, 1998).
LES at Ra ¼ 106 and 108 were performed using the

central scheme for the convective fluxes because the
upwind schemes are known to introduce significant
numerical dissipation in the resolved flow structures
(Mittal and Moin, 1997). LES of turbulent flows require
small time-steps to capture the unsteadiness of the grid-
resolved scales. Consequently, the explicit Adams–

Bashforth scheme with time steps of Dt ¼ 0:001
(Ra ¼ 106) and Dt ¼ 0:002 (Ra ¼ 108) have been used in
the present LES. Table 1 shows the computational de-
tails of the LES at Ra ¼ 106 and 108. The CPU times
were 13 (Ra ¼ 106) and 40 (Ra ¼ 108) seconds per time
step in an AMD-K7 at 1.2 GHz.

3. Validation

Before the discussion of the simulations of the flow in
a cubical cavity and the comparison with the experi-
ments of Leong et al. (1999), it is necessary to establish
the validity of the code in predicting turbulent RB flows.
To do so, the well-documented turbulent Rayleigh–
B�eenard flow in an infinite fluid layer has been chosen as
a benchmark case. These simulations were conducted at
Ra ¼ 6:3� 105 and Pr ¼ 0:7, in a computational box
of aspect ratios Lx=L ¼ 6, Ly=L ¼ 6, Lz=L ¼ 1 using the
centered scheme for the convective terms and the explicit
time-marching procedure. A coarse-grid simulation at
Ra ¼ 6:3� 105 was carried out using the conductive
state (i.e. linear temperature distribution and zero ve-
locity field) as initial conditions. When the turbulent
flow was fully developed, an instantaneous flow field
was interpolated in a refined grid. The interpolated data
was used as initial conditions for the computations at
the new grid resolution. It should be noted that the data
sampling procedure to obtain the statistics of the flow
was not started until the flow was fully developed. The
mean flow quantities were averaged along the homoge-
neous x- and y-directions, typically during 4500 time
steps (i.e. 45 non-dimensional time units). Table 2
summarizes the computational details of the DNS car-
ried out by Kerr (1996) and Woerner (1994) and the
present coarse-grid DNS (CDNS) using 61� 81� 81
(Mesh A), 41� 81� 81 (Mesh B) and 31� 81� 81

Table 2

Computational characteristics of DNS of turbulent Rayleigh–B�eenard convection in an infinite fluid ðPr ¼ 0:7Þ layer
Ra Lx Ly Lz Nx ¼ Ny Dx ¼ Dy Nz Dzmin Dzmax Nu

Woerner (1994) 6:3� 105 7:9 7:9 1 200 0.0396 49 0.005 0.0369 7.27

Kerr (1996) 5� 105 6 6 1 96 0.0625 48 0.002 0.0480 7.46a

Present study 6:3� 105 6 6 1 81 0.0759 61 0.004 0.0302 7.6

41 0.008 0.0377 7.7

31 0.008 0.0734 7.7
aThis value of Nu, which corresponds to Ra ¼ 6:3� 105, has been calculated by a least squares fit ðNu ¼ 0:186Ra0:276Þ of the results of Kerr (1996)

in the range 5� 1046Ra6 2� 107.

Table 1

Computational details of LES of Rayleigh–B�eenard convection ðPr ¼ 0:7Þ in a perfectly conducting cubical cavity
Ra Nx Ny Nz Dxmin Dymin Dxmax Dymax Dzmin Dzmax Dt

106 61 61 61 3:6� 10�3 3:6� 10�2 3:6� 10�3 3:6� 10�2 10�3

108 81 81 101 2� 10�3 2:8� 10�2 10�3 2:8� 10�2 2� 10�3
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(Mesh C) grid nodes. Uniform grid distributions were
used along the homogeneous x- and y-directions in
which periodic boundary conditions were imposed. The
grid along the z-direction was stretched near the walls
(z ¼ 0 and 1) where the non-slip and constant temper-
ature boundary conditions were used. It can be seen in
Table 2 that the present predictions of the time averaged
Nusselt number are about 5% and 2% higher than the
values given by Woerner (1994) and Kerr (1996), re-
spectively. This can be probably attributed to the
insufficient grid resolution of the present simulations
along the x- and y-directions (see Table 2). Large-eddy
simulations (LESs) using Mesh B and C predict the
same values of the time-averaged Nusselt numbers
shown in Table 2, indicating that for the present com-
putational conditions the SGS model has no influence
on the averaged wall heat flux. Fig. 3 shows the vertical
profiles of the averaged temperature (Fig. 3(a)) and the
rms of the temperature (Fig. 3(b)) and velocity fluctua-

tions (Fig. 3(c) and (d)) together with the corresponding
predictions of Woerner (1994). It can be seen in Fig. 3(a)
that the average temperature profile is well reproduced
by the CDNS using Mesh A. An undistinguishable
agreement is found when comparing the average tem-
perature profiles of the LES, not shown in Fig. 3(a), and
CDNS using Mesh B or C. The benefits of the SGS
model are more evident when comparing the profiles of
the velocity fluctuations in Fig. 3(c) and (d) using Mesh
C. The CDNS (Mesh C) without any SGS model clearly
overpredicts, by about 10%, the maximum values of
wrms (Fig. 3(c)) and vrms (Fig. 3(d)) while the results of
LES using the same grid resolution ð81� 81� 31Þ agree
well with DNS of Woerner (1994) obtained with a much
finer grid ð200� 200� 49Þ. From this validation exer-
cise it can be concluded that present LES of turbulent
Rayleigh–B�eenard flows with relatively moderate grid
resolutions are able to correctly predict the main sta-
tistics of the flow.

Fig. 3. Mean temperature (a) and fluctuation intensities (b, c and d) profiles in Rayleigh–B�eenard convection in an infinite fluid layer at Ra ¼ 6:3� 105

and Pr ¼ 0:7. (––) DNS results of Woerner (1994). (�) CDNS Mesh A ð61� 81� 81Þ. (M) CDNS Mesh C ð31� 81� 81Þ. (N) LES Mesh C
ð31� 81� 81Þ.

350 J. Pallares et al. / Int. J. Heat and Fluid Flow 23 (2002) 346–358



4. Results and discussion

The perfectly conducting Rayleigh–B�eenard cell (i.e.
fixed linear vertical temperature distribution on the
four lateral walls) allows heat transfer between the
sidewalls and the convecting fluid. Local and average
heat transfer rates, integrated over the whole surface ðSÞ
of a particular wall (w), are defined in Eqs. (5) and (6),
respectively.

~qqw ¼ � oT
oxn

����
w

~nn; ð5Þ

�qqw ¼ 1

S

Z
S
qw dS; ð6Þ

where xn and n are the coordinate and the unit vector
perpendicular to the wall, respectively. According to the
definition of qw in Eq. (6), negative values of local
heat transfer indicate output of thermal energy from the
fluid to the walls while positive values of qw imply heat
transfer from the solid boundary to the convecting fluid.
Note that, by definition, qw integrated over the surface
of the six walls of the cavity is zero for a steady time-
averaged flow. The local Nusselt number can be ob-
tained taking the absolute value of qw.

4.1. Laminar flow structures at Ra6 105

Numerical results of flows ðPr ¼ 0:71Þ in a cubical cell
with adiabatic lateral walls, reported in Pallares et al.
(1999), were used as initial conditions for the simu-

lations in the perfectly conducting cavity at low Ray-
leigh numbers (Ra ¼ 4� 104 for S1 and S5) and (Ra ¼
6� 104 for S3). In the present study, the flow and
thermal fields at a given Rayleigh number in a perfectly
conducting cavity were successively used as initial con-
ditions for other values of the Rayleigh number. While
for the adiabatic case up to seven different flow struc-
tures were seen to be stable (see Fig. 1), in the present
work, focused on a cavity with perfectly conducting
walls, only structures S1, S3 and S5 were obtained for
Ra6 105.
Fig. 4 shows the distributions of the local heat

transfer rates, qw, for structure S1 at Ra ¼ 4� 104, and
structures S3 and S5 at Ra ¼ 8� 104 in a perfectly
conducting cavity. Contours on the walls x ¼ 0, y ¼ 0
and z ¼ 0 are shown in Fig. 4(a), (c) and (e) and con-
tours on the other three walls, x ¼ L, y ¼ L and z ¼ L are
depicted in Fig. 4(b), (d) and (f). The extreme values of
qw on the horizontal walls are caused by flow impinge-
ment, hotter or colder than the wall. Correspondingly,
low absolute values indicate thermal boundary layer
development. Hot-ascending/cold-descending motions
occurring near the sidewalls of the cavity produce re-
gions of negative/positive qw on the lateral walls.
Fig. 4(a)–(d) show that the single roll structures S1

and S3, with the axis of rotation parallel to the x-
direction, produce two symmetrically distributed flow
impingements on each horizontal wall. The distance
between the positions of the maximum heat transfer
rates is the same on both horizontal walls for structure
S1. On the other hand, the flow impingements generated

Fig. 4. Local heat transfer rates on the six walls of a perfectly conducting cavity generated by (a and b) structure S1 at Ra ¼ 4� 104, (c and d)

structure S3 at Ra ¼ 8� 104 and (e and f) structure S5 at Ra ¼ 8� 104. Negative values of qw are indicated with dotted lines. The contour increment
in all the figures is 0.5.
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by structure S3 are closer on the bottom wall (Fig. 4(c))
than on the top wall (Fig. 4(d)). According to the flow
topologies of these single rolling motions, reported by
Pallares et al. (1999) in a cubical cavity with adiabatic
lateral walls, Fig. 4(a) and (b) show that structure S1
generates antisymmetric distributions of qw on the hor-
izontal and lateral walls y ¼ 0 and 1. As shown in Fig.
4(c), structure S3 generates two descending main cur-
rents near the vertical edges x ¼ 0, y ¼ 0 and x ¼ 1,
y ¼ 0 which produce two separated local maxima of qw
on the wall y ¼ 0. The main ascending flow occurs near
the wall y ¼ 1 and generates a single maximum of qw on
this wall. The flow circulation in structure S3 produces
different average heat transfer rates on the horizontal
walls and on the vertical walls parallel to the rotation
axis. The distributions of the local heat transfer rates of
the four-roll structure S5 (Fig. 4(e) and (f)) show that
ascending currents occur near the vertical edges x ¼ 1,
y ¼ 0 and x ¼ 0, y ¼ 1 and that descending flows occur
near the other two vertical edges of the cavity (see Fig.
1). As shown in Fig. 4(e) and (f) the impingements of the
vertical currents on the horizontal walls produce two
diagonally distributed maxima of qw.
Fig. 5 shows the average Nusselt numbers on the

horizontal plates of the flow structures (S1, S3 and S5)
at Ra6 105. In the case of structures S1 and S5 the ave-
rage Nusselt numbers at the hot wall is identical to the
value obtained at the cold wall while structure S3 gene-
rates different average heat transfer rates at the two

horizontal plates. The different averaged heat transfer
rates at the bottom and top cold walls produced by
structure S3 are plotted in the range of Rayleigh num-
bers in which this structure was found to be stable. For
purposes of comparison, Fig. 5 also shows the mea-
surements reported by Leong et al. (1999). The extra-
polation of the Nu vs. Ra curve at Nu ¼ 1 predicts a
critical Rayleigh number of RaC � 7� 103 in agreement
with linear stability analysis (Catton, 1970; Mizushima
and Matsuda, 1997) and experimental work (Leong et
al., 1999). Structure S1 is obtained as a steady flow
pattern in the range 7� 1036Ra6 4� 104. As the
Rayleigh number is increased from 4� 104 to 5� 104

this structure evolves to an unsteady S3 structure, which
was found to exist in the range 5� 1046Ra6 6� 104.
The time evolution of this unsteady flow structure shows
that the flow is oscillating with a single characteristic
frequency ðf � ¼ 7� 10�3ðgbDT=LÞ1=2 at Ra ¼ 5� 104

and f � ¼ 10�2ðgbDT=LÞ1=2 at Ra ¼ 6� 104Þ. At Ra ¼
8� 104, a steady S3 structure is obtained when an in-
stantaneous flow field of the oscillatory time-dependent
S3 structure at Ra ¼ 7� 104 is used as an initial condi-
tion. A similar atypical flow sequence, in which a non-
steady flow structure reverts to a steady state when the
Rayleigh number is increased, has been reported in ex-
periments (Gollub and Benson, 1980) and numerical
simulations (Mukutmoni and Yang, 1995) in rectangu-
lar small aspect ratio enclosures at Ra � 105 and Pr ¼ 5.
The S3 structure evolves to the four-roll structure S5 as

Fig. 5. Average Nusselt numbers on the horizontal plates. (a) Low Rayleigh numbers. (M) Leong et al. (1999), (
) S1, (r) S3 bottom wall, (}) S3 top
wall, (�) S5. The arrows indicate the flow transitions observed.
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the Rayleigh number is increased from Ra ¼ 8� 104 to
9� 104. Structure S5 remains steady for 2� 1046Ra6
9� 104.
Differences between the Nusselt numbers measured

by Leong et al. (1999) at Ra ¼ 104 and 4� 104 and the
corresponding present predictions (Nu ¼ 1:18 at Ra ¼
104 and Nu ¼ 2:03 at Ra ¼ 4� 104) are 5% and 0.6%,
respectively (Fig. 5). The significant difference at Ra ¼
104 may be related to the different flow structure in the
experiments. Experimental visualizations by Pallares
et al. (2001) in a cubical cavity filled with silicone oil
(Pr ¼ 130) at Ra6 104 showed that the preferred flow
structure under this conditions was the diagonally
aligned single roll S2 (see Fig. 1). However, the diago-
nally aligned roll could not be stabilized in any of the
present numerical simulations.
The measurements of the Nusselt numbers obtained

by Leong et al. (1999) at Ra ¼ 105 fell into two sets
depending on the value of the mean temperature of their
experiments. The simulations they carried out in one
half of the cavity revealed that the Nusselt numbers on
the horizontal walls of a S3 structure agreed with the
measured values. This suggests that the variation of the
physical properties with temperature may play an im-
portant role in the selection of the spatial orientation of
the flow structure. In fact, Leong et al. (1999) found that
the computed Nusselt number was within the experi-
mental uncertainty if the simulations take into account
the variation of the physical properties with tempera-
ture.
In contrast to the simulations of Leong et al. (1999) in

one half of the cavity, present simulations of the full
cavity, assuming constant fluid properties at Ra ¼ 105,
predict an unsteady S5 structure with a time-averaged
Nusselt number of Nu ¼ 3:38. Fig. 5 shows that the
onset of unsteadiness produces a change in the slope of
the Nu vs. Ra curve. The simulations carried out only in
one half of the cavity at Ra ¼ 105, using the same grid
resolution ð21� 41� 41Þ, evolved to a time-dependent
oscillatory structure S6 (see Fig. 1) with a time-averaged
Nusselt numbers in the hot and cold walls of Nu ¼ 2:92
and 3.61, respectively. Three different initial conditions
were used to show how initial conditions can affect the
flow structure selection when the simulation is restricted
to one half of the cavity. All these conditions were: (1)
conductive state and velocity field set to zero, (2)
structure S5 at Ra ¼ 105 and (3) structure S3 at
Ra ¼ 8� 104. These three different initial conditions led

to the same time-dependent oscillatory S6 structure.
When the computational domain was extended to the
full cavity and structure S6 was set as an initial condi-
tion the simulation reverted to an S5 structure. This
suggests that the preferred flow structure for the present
numerical conditions at Ra ¼ 105 ðPr ¼ 0:7Þ is the four-
roll structure S5.

4.2. Flow structures at Ra ¼ 106 and 108

LESs at Ra ¼ 106 and 108 were carried out using the
conductive state as initial condition. Table 3 shows some
time and volume averaged quantities of the flow. The
flow statistics discussed in this section were obtained by
sampling the fully developed grid-resolved velocity and
thermal fields during 176 (Ra ¼ 106) and 168 (Ra ¼ 108)
non-dimensional time units. It can be seen in Table 3
that the time and volume averaged value of the rms of
the velocity components, ð2hKiV Þ

1=2, is about 150% of
the averaged modulus of the velocity vector, j~VV j

� �
V ,

indicating that the flow at Ra ¼ 106 and Ra ¼ 108 pre-
sents large fluctuation intensities with respect to the
corresponding time-averaged flow topologies. Consi-
dering the averaged modulus of the velocity vector as
a typical velocity scale of the flow, the distance covered
by a fluid particle during the sampling time is about 14
times the cavity height. The averaged values of the ratio
between the SGS viscosity and the molecular viscosity
are 0.5% at Ra ¼ 106 and 8% at Ra ¼ 108. However,
maximum instantaneous values of this ratio attain 5%
(Ra ¼ 106) and 100% (Ra ¼ 108) during the simulations.
The small SGS contribution at Ra ¼ 106 indicates that
the grid resolution used (613) captures most of the small
structures of the flow and consequently, the simulation
is fairly close to a DNS.
Following the method proposed by Jeong and

Hussain (1995) to detect the occurrence of vortex cores,
Fig. 6(a-1) (Ra ¼ 106) and Fig. 6(b-1) (Ra ¼ 108) show
the time-averaged three-dimensional flow topologies in
terms of a surface of constant negative value of k2, the
second largest eigenvalue of the velocity gradient tensor.
More details about this definition can be found in Jeong
and Hussain (1995). The time-averaged vector fields
and the rms contours in the vertical planes indicated
in Fig. 6(a-1) and Fig. 6(b-1) are shown in Fig. 6(a-2)
and (a-3) (Ra ¼ 106) and Fig. 6(b-2) and (b-3) (Ra ¼
108). For clarity, in Fig. 6(b-2) and (b-3) ðRa ¼ 108Þ,
only half of the vectors in each direction are plotted. The

Table 3

Volume averaged quantities and averaged Nusselt numbers at Ra ¼ 106 and 108 (Pr ¼ 0:7)

Leong et al. (1999) Present study

Ra Nu ts
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hKiV

p
hj~VV jiV hTrmsiV hvSGSiV =m (%) Nurms Nu

106 7:88� 0:09 176 0.12 0.085 0.070 0.5 0.37 7:5� 0:05

108 31:2� 0:4 168 0.14 0.086 0.053 8 1.5 36:5� 0:1
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irregularities on the surface of k2, corresponding to
Ra ¼ 108 (Fig. 6(b-1)), can be attributed to insufficient
sampling time to compute the flow statistics. Table 3
shows that the rms of the averaged Nusselt on the
horizontal walls at Ra ¼ 108 is about 4.5 times the one at
Ra ¼ 106 while the sampling time (ts) is 4% lower (see
Table 3). The sampling time used at Ra ¼ 108 falls in the

limit of the computational capabilities of the present
study requiring about 40 days of CPU time to obtain an
averaged field. The time-averaged Nusselt numbers at
Ra ¼ 106 and 108 are shown in Table 3 together with the
root mean-square error due to the finite integration time
(Tennekes and Lumley, 1992). The differences between
the averaged Nusselt numbers on the bottom and top

Fig. 6. Time averaged flow fields at (a) Ra ¼ 106 and (b) Ra ¼ 108. ((a-1) and (b-1)) Surfaces of constant value of k2, k2=jk2jmin ¼ �0:1. ((a-2) and
(a-3)) Averaged vector fields, thick line contours of averaged temperature and filled contours of the fluctuation intensities in the vertical planes

x ¼ 0:5 and y ¼ 0:5. ((b-2) and (b-3)) Thick line temperature contours and filled contours of the fluctuation intensities in the plane x ¼ 0:5 and the

diagonal symmetry plane. The values of the temperature contours are hT i ¼ 0:1, 0.2 and 0.3 in (a-2) and (a-3) and hT i ¼ �0:05, �0.1, 0.05 and 0.1 in
(b-2) and (b-3). The vector near the bottom right corner of (a-2) to (b-3) shows the scale of the velocity vectors plotted.
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walls are within this error. At Ra ¼ 108 the sampling
time, and thus the CPU time, should be, approximately,
doubled to decrease a 50% the error of the time-aver-
aged Nusselt number on the horizontal plates. Never-
theless, differences between the numerically predicted
Nusselt numbers and the measurements of Leong et al.
(1999), shown in Table 3, are as small as 5% at Ra ¼ 106

and only 15% at Ra ¼ 108.
The average flow structure at Ra ¼ 106 consists of

two main counter rotating vortex rings located near the
horizontal walls and four small vortex tubes near the
y-edges of the cavity (see Fig. 6(a-1)). It can be seen that
the time-averaged flow topology is symmetric with res-
pect the horizontal and vertical mid planes of the cav-
ity. The main vortex ring structure can be understood as
a combination of four x-rolls (i.e. with vorticity aligned
with the x-direction) located near the x-edges of the
cavity and four y-rolls near the y-edges, as can be in-
ferred from the vector fields of Fig. 6(a-2) and (a-3) and
the three-dimensional flow topology of Fig. 6(a-1). The
main vortex rings generate flows from the horizontal

walls towards the sidewalls and from there to the hori-
zontal walls (Fig. 6(a-2) and (a-3)). The small four
corner tubes, observed in the time-averaged flow field
and located near the y-edges of the cavity, intake fluid
from the vortex ring near the vertical symmetry mid
plane y ¼ 0:5. From there, the fluid particles in this
time-averaged flow are diverted towards the sidewalls
(y ¼ 0 and 1) rotating about the axis of the small tubes.
Close to the sidewalls, the flow from the vortex tubes is
reintroduced to the main vortex rings through the bends
of the vortex tubes shown in Fig. 6(a-1).
Fig. 7(a) shows an instantaneous flow field at Ra ¼

106 in terms of isosurfaces of the vertical velocity com-
ponent, w, (Fig. 7(a-1)) and vector fields in planes
x ¼ 0:25 and 0.75 (Fig. 7(a-2)) and y ¼ 0:25 and 0.75
(Fig. 7(a-3)). Note that Fig. 7 only serves as an example
of a typical state of the flow. It can be seen in Fig. 7(a)
that the confining effect of the sidewalls generates im-
portant ascending and descending currents near these
walls. Near the horizontal mid plane z ¼ 0:5, the up-
ward and downward streams are conducted towards the

Fig. 7. Instantaneous flow visualization at (a) Ra ¼ 106 and (b) Ra ¼ 108. ((a-1) and (b-1)) Isosurfaces of the vertical velocity component, w. ((a-2),

(a-3), (b-2) and (b-3)) Vector fields in planes x ¼ 0:25, x ¼ 0:75, y ¼ 0:25 and y ¼ 0:75.
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central part of the cavity to produce impinging flow
regions on the horizontal plates (see Fig. 7(a)). In Fig.
7(a-2), instantaneous x-rolls are clearly identified, near
the four x-edges of the cavity. In contrast, only some
of the four y-rolls near the y-edges can be seen in Fig.
7(a-3). As shown in Fig. 7(a-3) they appear together
with vortical motions near the horizontal midplane of
the cavity ðz ¼ 0:5Þ.
Comparison of the distributions of the velocity and

temperature fluctuation intensities shown in Fig. 6(a-2)
and (a-3) indicates that, on average, larger flow un-

steadiness occurs near the sidewalls x ¼ 0 and 1 in com-
parison with the sidewalls y ¼ 0 and 1. Obviously this
corresponds to this specific realization; there is an
exact equal possibility of obtaining just the opposite
case. In fact, the centers of the y-rolls (Fig. 6(a-3)) are
closer to the corresponding sidewalls (x ¼ 0 and 1) than
the x-rolls (Fig. 6(a-2)). The different fluctuation inten-
sities near the x and y sidewalls are consistent with the
instantaneous flow visualization example at Ra ¼ 106

shown in Fig. 7(a). Also, the inspection of several
snapshots of the flow indicates that the four x-rolling

Fig. 8. Time-averaged heat transfer rates on the walls of the cavity at (a) Ra ¼ 106 and (b) Ra ¼ 108.
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motions shown in Fig. 6(a-2) are more persistent that
the y-rolls of Fig. 6(a-3). In the cross-section of the x-
rolls (Fig. 6(a-2)), large fluctuation intensities are lo-
cated away from the sidewalls y ¼ 0 and 1, near the
horizontal mid plane of the cavity z ¼ 0:5, where the
flow is separated from these lateral walls. Fig. 6(a-2)
shows that local maxima of the rms occur near the im-
pingement of the rolling motions on the bottom and top
walls. As an example, at x ¼ 0:5, y ¼ 0:5 and z ¼ 0:05,
urms ¼ vrms ¼ Trms ¼ 0:09, wrms ¼ 0:05, w ¼ 0:03 and
because of symmetry, u ¼ 0 and v ¼ 0.
The time-averaged distributions of the local heat

transfer rates, defined in Eq. (5), on the walls of the
cavity generated by the vortex ring structures at Ra ¼
106 are shown in Fig. 8(a). Because of the symme-
try elements of the vortex ring structures, the distri-
butions of qw on the walls x ¼ 0 and z ¼ 1, not shown,
are equivalent to the ones plotted in Fig. 8(a) at x ¼ 1
and z ¼ 0, respectively. It can be seen that the extreme
values of heat transfer rates are located in the central
region of the horizontal walls and are distributed along
the y-direction according to the larger rolling motions of
the y-rolls (Fig. 6(a-2)) in comparison with the x-rolls
(Fig. 6(a-3)). Although the time- and surface-averaged
heat transfer flux for each sidewall is zero, according to
the symmetry elements of the time-averaged flow, Fig.
8(a) shows that near the horizontal walls there is sig-
nificant heat transfer between the fluid and the con-
ductive sidewalls. It can be seen in Fig. 8(a) that the flow
is heated/cooled near the bottom/top part of the lateral
walls. The larger extreme values of qw on the sidewalls
x ¼ 1 and 0 in comparison with the sidewalls y ¼ 0 and 1
agree with the time-averaged temperature distribution
shown in the bottom left quadrant of Fig. 6(a-2) and (a-
3) with thick line contours. Note that the locations of
the y-rolls (Fig. 6(a-2)), closer to the corresponding
horizontal edges of the cavity than the x-rolls (Fig. 6(a-
3)), produce larger heat transfer rates (i.e. concentration
of the temperature contours) on sidewalls x ¼ 0 and 1
than in the walls y ¼ 0 and 1.
Fig. 6(b-1) shows that at Ra ¼ 108 the time-averaged

vortex ring structures are detached from the hori-
zontal walls near two diagonally opposed vertices of
the cavity. The Roman numerals of Fig. 6(b-1) iden-
tify the vortex cores shown in the two vertical cuts of
the flow of Fig. 6(b-2) and (b-3). It can be seen that
the vector fields shown in these figures are antisym-
metric with respect to the center of the cavity (x ¼ 0:5,
y ¼ 0:5, z ¼ 0:5). Consequently, the flow topology can
be considered symmetric with respect to the diago-
nal symmetry plane of the cavity ðz; dÞ indicated in Fig.
6(b-1).
The topology of the instantaneous flow field at

Ra ¼ 108 shown in Fig. 7(b-1)–(b-3) indicates an in-
crease of the overall turbulence level of the flow in
comparison with the large-scale and more organized

motions of Fig. 7(a-2) and (a-3) at Ra ¼ 106. Despite,
the irregularities on the isosurfaces of w (Fig. 7(b-1)),
produced by small-scale fluctuations, Fig. 7(b-1) shows
that ascending and descending sheets of fluid occur near
the sidewalls of the cavity. The instantaneous vector
fields of Fig. 7(b-2) and (b-3) show that some vertical
currents separate from the sidewalls. Note for example
the vertical flow in Fig. 7(b-2) in the plane x ¼ 0:75 near
the sidewall y ¼ 0. In contrast, some others flow along
all the length of the lateral wall towards the horizontal
walls (see for example the vertical flow in Fig. 7(b-2) in
the plane x ¼ 0:25 near the sidewall y ¼ 0).
The comparison between the topology of the time-

averaged vortex ring structures at Ra ¼ 106, with three
symmetry planes (x ¼ 0:5, y ¼ 0:5 and z ¼ 0:5) and Ra ¼
108, with a diagonal symmetry plane, shows a clear
symmetry reduction as the overall turbulence level of the
flow is increased. The expected augmentation of the ir-
regularity of the generation and spatial distribution of
vertical currents as the turbulence level of the flow is
increased would produce time-averaged flows symmet-
ric with respect the two vertical diagonal planes of the
cavity. However the symmetry reduction observed at
Ra ¼ 108 suggests a considerable organization of the
generation and spatial distribution of the instantaneous
ascending and descending currents, produced by the
confining effect of the sidewalls.
The distributions of the velocity and temperature

fluctuations intensities at Ra ¼ 108 are shown in Fig.
6(b-2) and (b-3). Note that because of the symmetry of
the time-averaged flow these distributions are symmetric
with respect to the center of the cavity. It can be seen in
Fig. 6(b-2) and (b-3) that, near the sidewalls, the maxi-
mum temperature and velocity fluctuation intensities are
located near the position on the sidewalls where the
vertical currents separate from these walls. In these
maxima, the vertical fluctuation intensities, wrms, con-
tributes by about a 50% to the overall rms value plotted
in Fig. 6(b-2) and (b-3).
The local heat transfer rates on the walls of the cavity

at Ra ¼ 108 are plotted in Fig. 8(b). The extreme values
of qw on the horizontal walls are situated near two di-
agonally opposed vertical edges of the cavity. The po-
sitions of the maximum and minimum heat transfer
rates on the bottom and top walls correspond to the
position of the stagnation points on the horizontal
plates of the vector field in the vertical diagonal plane
shown in Fig. 6(b-3). It can be seen in Fig. 8(b) that
there is significant heat transfer input or output through
the lateral conductive walls of the cavity where the
vortex ring structures approach the horizontal walls.
This is consistent with the averaged temperature thick
line contours plotted in the left part of Fig. 6(b-2), where
the x-roll IV, closer to the sidewall y ¼ 0 than the x-roll
I, produces the concentration of the temperature con-
tour near the lateral wall.
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5. Conclusions

Laminar and turbulent Rayleigh–B�eenard flows in a
perfectly conducting cubical cavity were numerically
simulated. Two single roll structures and one four-roll
structure were found to be stable at low Rayleigh
numbers (Ra6 105). In this range of Rayleigh numbers,
several transitions between laminar flow structures were
observed. There is a general agreement between the
computed Nusselt numbers on the horizontal walls of
the cavity and the measurements at Ra ¼ 104, 4� 104,
106 and 108 reported by Leong et al. (1999). LESs at
high Rayleigh numbers (Ra ¼ 106 and 108) predicted
time-averaged vortex ring structures near the horizontal
walls. These structures are produced by the recirculation
of instantaneous large-scale persistent vertical currents
ocurring near the sidewalls. The vertical motions are
generated, near the horizontal walls, by the confining
effect of the lateral walls and by the heat transfer be-
tween the convecting fluid and the conductive side-
walls. At Ra ¼ 106 the vortex ring structures produce
different flow topologies and fluctuation intensities near
two consecutive lateral walls of the cavity. The in-
stantaneous flow field visualizations show an organized
distribution of large-scale vortical motions within the
cavity. The time-averaged flow at Ra ¼ 108 shows a di-
agonal orientation of the vortex ring structures and the
instantaneous flow fields present small-scale fluctua-
tions produced by the overall increase of the turbu-
lence level of the flow in comparison with the flow at
Ra ¼ 106.
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